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Numerical Results for the Symmetrical
Condensed TLM Node

ROGER ALLEN, ALAK MALLIK, aNnp PETER JOHNS

Abstract —Numerical calculations have been made in order to test the
accuracy of the recently derived three-dimensional symmetrical condensed
TLM node for electromagnetics. Demonstrations of its use in these areas
are given. Analysis of dispersion characteristics shows that the velocity
error bound for the new symmetrical condensed node is likely to be less
than that for the expanded node. Predictions of the surface currents on an
F-111 aircraft due to the scattering of an incident plane wave are in good
agreement with other computed codes and measurements. Lastly, the
introduction of stubs into the scattering node allows generalization to a
cylindrical mesh, which is tested by finding conaxial cavity modes.

]J. INTRODUCTION

HE THEORETICAL development of the new sym-

metrical condensed TLM node for the solution of
electromagnetic problems is described in [1]. The purpose
of this paper is to present numerical results to test the
accuracy of the node and to demonstrate its use.

II. PROPAGATION ASSESSMENT IN SIMPLE CAVITIES

It would require extensive detailed analysis of the sym-
metrical condensed node to obtain general dispersion char-
acteristics similar to those obtained for the expanded node
in {2]. This work has not yet been done and so numerical
results are used here to assess this error. The velocity of
waves is observed in the three principal propagation direc-
tions in the mesh by obtaining the resonant frequency of
modes in rectangular cavities and comparing them with
analytical results. ‘

In [1] it was possible to predict the characteristics for
two different directions of propagation on the three-
dimensional symmetrical-condensed-node mesh. If ¢, ¢,,
and ¢, are the angles between the direction of propagation
and the x, y, and z axes, then for ¢, =0 and ¢, = ¢, = 7/2
(i.e., propagation in the direction of the x axis) the mesh
was shown to be dispersionless. for ¢,=¢,=n/4 and
¢, =m/2, it was seen that the mesh behaved like two
separate two-dimensional series meshes carrying waves
traveling in the coordinate directions.

These propagation characteristics are tested by taking a
two-dimensional slice out of the three-dimensional sym-
metrical-condensed-node mesh and using it to model the
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cross section of a 10 Al X10 A/ square waveguide (where
A/ is the distance between nodes in the mesh). Results for
the cutoff frequencies for TM modes are compared with
results already obtained for a two-dimensional shunt-node
mesh in [3]. The comparison is shown in Table I and
results are expressed in terms of A//A, where A is the
free-space wavelength in a medium of ¢,=p,=1 (in con-
trast to a medium of ¢,=2 and ., =1 in [3]). In all cases,
sufficient timesteps are made to keep the truncation error

" less than 0.2 percent.

Highly accurate results are obtained for the two-dimen-
sional mesh for TM, ,-type modes. This is because waves
are traveling at ¢, = ¢, =u/4 on the mesh and propa-
gation in this direction is dispersionless for the two-dimen-
sional mesh. In contrast, the results for TM,, modes for
the slice in the three-dimensional mesh are less accurate
because dispersion now takes place. Conversely, TM,,
modes are highly accurate for the three-dimensional mesh
where the propagation direction is near to a coordinate
direction, where this mesh is dispersionless.

These results can be confirmed in detail by propagation
analysis. However, in more general problems waves do not
travel in just one direction through the mesh, and it is
convenient to use a velocity error bound. On the two-
dimensional mesh, the dispersion is most pronounced in
the ¢, = 0 direction, where the ratio of wave velocity v on
the network to the free-space velocity ¢ is given by [2]

v Al 1
=q
Al
sin* {ﬁsin(% 7\—”

c A
This formula is used to calculate the bound for the two-
dimensional mesh in Table II.

On the two-dimensional slice in the three-dimensional
mesh, it is assumed that the worst dispersion is for propa-
gation in the ¢, = 7 /4 direction. It is indicated in [1] that
propagation is now identical to ¢, =0 on a true two-
dimensional mesh but with wavelengths increased by a
factor of y2 . In this case, the bound is given by

v a Al 1

R LU B

(1)

This bound is used for the three-dimensional slice in
Table II.
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. TABLEI TABLE III
MOoDES IN A 10 A/ X10 A/ SQUARE TwO-DIMENSIONAL CAVITY MODES IN THREE-DIMENSIONAL RECTANGULAR CAVITIES
CONDENSED NODE EXPANDED NODE
CUT-OFF FREQUENCIES A&/X CAVITY AR/X A%/X
DIMENSIONS MODE
MODE BERROR ERROR AR FREQUENCY| ERROR| FREQUENCY| ERROR| BOUND
ANALYTICAL 2-d MESH % 3-d SLICE % % % %
TMll 0.0707 0.0707 0.0 0.0706 0.1 6 x 4x 3 ™19 0.1490 0.8 0.1482 1.3
T™, 4 0.1581 0.1561 1.3 0.1578 0.2 6x 4x 3| ™ 0.2048 1.5 0.2040 2.1
TM33 0.2121 0.2118 0.1 0.2080 1.9 10 x 10 x 10 ™, 0.0863 0.4 0.1 0.9
'I‘M15 0.2550 0,2418 5.2 0.2540 0.4
10 x 10 x 10 ™ 0.2576 0.8 1.0 12.3
333
TABLE II : i
VeLocrry ERROR BouNDs EOR MODES IN TABLE I The a.nal}.l'uca] result for the TM;;; modein a 10X10X10
waveguide is
VELOCITY REDUCTION BOUND %
MODE AR/A Al ‘/5_
ANALYTICAL 2-d MESH 3-4 SLICE ~ =
A2
™, 6.0707 - 0.2 and substituting this into (4) gives
¢
™, 4 0.1581 2.3 1.1 — =1.00104
™ 0.2121 4.6 2.0 v
™, o 0.2550 7.6 3.1 showing the good accuracy for propagation on the ex-
panded-node mesh in this direction.

The results of Table I for the three-dimensional slice are
all within the bounds and are close to the bound in the
case of TM,, -type modes. These results tend to confirm
the predictions made in [1].

The most interesting result, however, is that for two-
dimensional problems, a two-dimensional slice taken out
of a symmetrical-condensed-node three-dimensional mesh
is more accurate in terms of velocity error than a true
two-dimensional shunt- or series-node mesh.

Results for three-dimensional cavities are given in Table
ITI, where the 6X4X3 cavity results are compared with
those obtained by the expanded-node mesh in [4]. The
increased accuracy for the condensed node is to be ex-
pected for TM,,, -type modes since these again involve
two-dimensional propagation and the true two-dimen-
sional meshes are more accurate than two-dimensional
propagation on the expanded mesh [2].

The velocity error for the expanded node mesh is given

by [2]

i Z[WCAZ ]+ . 2[7rcAl ]
sin o COs ¢, | +sin o cos ¢,

wcAl asi 2[77Al] ;
v cos¢, | =4sin” | —-|. (3)

+ sin®

Thus, for waves propagating in the ¢, =
the error is given by

¢, =¢, direction,

v a Al
TR

The results for the TM,;; mode in Table III clearly show
that the symmetrical condensed node is not as accurate in
this direction.

The velocity characteristics for the expanded node in
other directions are

\

v a Al 1
PRV A7

4 t/— >\ 1|i\/§Sln(%7)}
o, =¢,=m/4 ¢y=/2 (%)

and
v Al 1
Z=WT [, 7 AL\ ]
R N
¢, =0 x,=¢,=7/2 (6)

giving velocity errors of 0.3 percent and 0.9 percent, re-
spectively, for Al/A = V3 /20. The latter result represents
the direction of worst error and therefore forms the bound
in Table III.

Results for the TM;;; in Table III show that a similar
comparison can be made at a higher frequency in the same
direction of propagation.

If it is assumed that the ¢ = qSy ¢, direction has the
worst dispersion characteristics in the symmetrical con-
densed node, then it can be concluded that this is better
than the worst dispersion in the expanded-node case.

The conclusion for three-dimensional propagation, if the
above assumption is correct, is that the overall accuracy of
the symmetrical condensed node, in terms of velocity
error, is better than the expanded node.
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Fig. 1. Geometry of test cylinder for scattering test. Cylinder dimen-
sions: 19 m X3 mX3 m. Space box dimensions: 29 mX11 mX11 m.
Excitation, E, plane wave at front or back.
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Fig. 2. Results for scattering for test cylinder. Curve a: asymmetrical
condensed node; excitation from front, output point 1. Curve b: sym-
metrical condensed node; excitation from front, output point 1, or
excitation from rear, output point 2. Curve ¢: asymmetrical condensed
node; excitation from rear, output point 2.

III. TiME-DOMAIN SCATTERING

The condensation of the expanded-node mesh into an
asymmetrical or point node [5], [6] represents a significant
improvement in the modeling technique for reasons given
in [1]. The node, however, does have asymmetry in that
when viewed in one direction a shunt connection is first
seen, while when viewed in the opposite direction a series
connection is first seen. In many situations, this asymme-
try seems to have little effect. In cavity resonance prob-
lems, for example, it is likely that any apparent shift in the
position of one boundary is compensated by an equivalent
shift in another. In scattering problems, however, the
asymmetry can be more apparent, and this is demon-
strated by the following simple scattering problem.

Fig. 1 shows a conducting cylinder contained in a box of
space with absorbing boundaries. A plane of E field
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Fig. 3. Geometry of F-111 aircraft for scattering test. (a) View from

above. (b) View from underneath.

excites the problem and this can be either at the “front” or
the “rear” of the cylinder. The geometry is perfectly sym-
metrical and so there should be no difference between the
two excitations, However, the asymmetrical-condensed-
node mesh does appear different in the two directions and
so numerically there is a difference. Fig. 2 shows results for
the x-directed surface current at output point 1 for excita-
tion from the front compared with the output at point 2
for excitation from the rear. In both cases, the excitation
function was

F(t) = Eo[exp (= t/7;) —exp(~1/7,)] (7N
where E,=5.92X10% 7,=245X10"" s, and 7,=2.85X
107 ?s.

Fig. 2 also shows the result for the symmetrical con-
densed node, and it is pleasing to note that it lies between
the two results for the asymmetrical mesh. The symmetri-
cal node gives precisely the same result for both front and
rear excitation, of course.
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Fig. 4. Scattering result for F-111 aircraft.
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Fig. 5.

Coaxial cavity geometry.

The geometry for calculating the electromagnetic pulse
(EMP) response of an F-111 aircraft when illuminated
with a plane wave with E field along the fuselage is shown
in Fig. 3(a) and (b). The data preparation for this problem
exploits the regularity of the symmetrical-condensed-node
mesh. It was generated by a simple three-dimensional
modeler package in which the primitive building shape is a
rectangular sheet, the surface of the aircraft and the excita-
tion being made up of these primitives. The problem is
chosen because it represents a reasonably complicated
scattering problem for which there are measured results
and for which results have been obtained by other numeri-
cal methods. The axial current density on the top face of
the fuselage obtained by the symmetrical-condensed-node
mesh is shown in Fig. 4, and this result shows good
agreement with measurements and with results obtained
by the finite-difference code THREDE [7]. The result also
agrees with that obtained by Garthwaite, Armour, and
Moore using wire grid modeling [8].

The workspace in this scattering problem was sur-
rounded by absorbing boundaries formed by setting the
reflection coefficient for incident pulses to zero.

IV. TuEg Use oF STUBS IN A CYLINDRICAL MESH

TLM is not restricted to a regular Cartesian mesh; it can
be used with graded meshes and general orthogonal meshes.
The cylindrical mesh provides an excellent test for the
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Fig. 6. Frequency-domain result for coaxial cavity.

TABLE IV
MODES IN A CoAXIAL CAVITY
MODE FREQUENCY
(t,6,2) (GHz)
101 3.16
111 1.81
121 2.39
201 5.56
211 . 3.46
221 4.20
102 4.09
112 3.16
122 3.53
202 6.14
212 4.32
222 4.94

stubs since it uses both additional capacitance and ad-
ditional inductance at each node.

The test problem chosen is the coaxial cavity shown in
Fig. 5 using a cylindrical mesh for r, 8, z of size 6 X12X5.
The technique used for the varying size of elements is
similar to that used in [9] and [10]. In particular, the
method used here employs link lines between the nodes, all
with characteristic impedance equal to the impedance of
free space. The network is then scanned to choose a
timestep such that, for each element, inductance and
capacitance have to be added (rather than subtracted) to
obtain the analytical inductance and capacitance of the
element. This inductance and capacitance are then added
to the nodes using the various stubs. In this way, the node
with stubs described in [1] can be tested.

The timestep used was 8.39x107 ! s, and 2000 time-
steps were taken. The H, field was excited at the single
point (6,3,3), and the output was also the H, field at the
point (6,9,3). This excitation and output were chosen to
eliminate TEM modes. The result for the Fourier trans-
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form of the time-domain waveform at the output point is
shown in Fig. 6. The resonances of the various modes can
be compared with Table IV, which gives the analytical
results.

V. CONCLUSIONS

The dispersion characteristics predicted in [1] have been
confirmed in this paper, and the results also show that the
velocity error bound for the symmetrical condensed node
is likely to be less than for the expanded node.

The accuracy of the symmetrical condensed node ap-
proach in time-domain scattering problems has also been
checked by comparisons with results obtained using the
well-established asymmetrical condensed TLM node, the
finite-difference and moment methods, and also with mea-
surements. In the case of the comparison with the asym-
metrical node, the results for the symmetrical node fell
between the perturbations caused by asymmetry.

The modification to the node scattering matrix by the
addition of stubs has also been checked by calculating
modes in a coaxial cavity on a cylindrical mesh.

This paper therefore substantiates the theory of the
symmetrical condensed node given in [1} and demonstrates
the use of this significant development in TLM for electro-
magnetics.
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